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Abstract

We prove a general interpolation theorem for linear operators acting simultaneously in
several approximation spaces which are defined by multiparametric approximation families.
As a consequence, we obtain interpolation results for finite families of Besov spaces of various
types including those determined by a given set of mixed differences.
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1. Introduction

The main objective of the present paper is a general interpolation theorem for
finite sets of approximation spaces determined by a multiparametric approximation
families. Spaces of this kind are found in several areas of analysis including Sobolev
type embeddings, linear and nonlinear multivariate approximation, and interpola-
tion space theory. Typical examples are ‘“‘mixed” Lﬁ([REd) spaces with p:=
(p1, ...,pa), anisotropic Sobolev or Besov spaces and spaces defined by a
“dominated” set of mixed derivatives or differences. Some of the results related to
these spaces are simple consequences of the respective one-dimensional facts and
induction on dimension. However, genuine multidimensional results have nothing in
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common with this approach, since most of them are not true for univariate
functions. Typical ones are inequalities for Fourier transform of a function from
anisotropic Sobolev space W] (R‘I ) due to Bourgain [Bo], Pelczynski and
collaborators [PSe,PW], and Kolyada (see survey [K, Section 13.3]).

Unfortunately, proofs of results of this type are mostly long and complicated; we
hope that interpolation space technique presented in this paper may be of
importance for clarifying these proofs and obtaining new results in this area.

The basic concept, an approximation space, appeared as a by-product of the
classical S. Bernstein—Jackson theory of trigonometrical approximation (see, e.g.,
[N,T] and references therein). Abstract approximation spaces were introduced by
Brudnyi and Timan (1959) for the special case of monotone families of linear subsets
{Ax} with dim Ay = k, keZ, (see references in [T]). More general one-parametric
approximation spaces were then introduced and studied by Peetre and Sparr [PS]
(see [BK2, Section4.2] for references of subsequent papers by I. Asekritova, Yu.
Brudnyi, N. Krugljak, P. Nilsson and A. Pietsch and others devoted to the topic).

The approximation space of the present paper, Eqo(X;.A), is determined by the
next three ingredients: an ambient Banach space X, an approximation family A =
{Apy=X : keZﬁ} and an E-parameter &, which is a Banach lattice of functions on
Zi (see Section 2 for these and consequent notions and notations).

The main problem of the paper is as follows:

Let E5(X; A) = (Eq,(X;; A))l, be an n-tuple of approximation spaces and F be an
interpolation functor on a category of Banach n-tuples.

Problem. Find conditions on A and F ensuring validity of the equality
F(E(X; A)) = Ex@)(F(X); A). (1.1)

It is not difficult to derive from (1.1) the splitting property of F with respect to the n-
tuple @(X) = (@;(X;))"_, of the vector-valued Banach lattices. We will show that this
property is also sufficient for (1.1) if, in addition, A is complemented in X and has a
special algebraic structure. This allows us to derive new interpolation results for n-
tuples of anisotropic Besov spaces and similar objects of this kind. Some of them are
new even for the well-studied case of couples (n = 1). For example, an anisotropic
analog of the classical real interpolation theorem asserts that

(B, (R), B} "(R)),, = By(R) (12)

for 5, p, q being, respectively, 0-means of (3°,5'), (po,p1) and (qo, q1), provided that
g =p and 3°,5' are collinear, see [G,Tr, Section2.13]. The latter condition looks
unnatural; as in many other cases in this area it, in fact, follows from a presentation
of Bf;" as a onme-parametric approximation space. A d-parametric representation
allows us to find the real and complex interpolation spaces for n-tuples of arbitrary
anisotropic Besov spaces as d-parametric approximation spaces and investigate the
cases of validity of a relation similar to (1.2). A partial case is pointed out in Section
4.2; the general situation will be presented elsewhere.
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The proof of the main result is based on the decomposition method going back to
classical Bernstein’s proof of his inverse theorem. For the first time it was used in
[BK1], where, in particular, a new proof of the Peetre—Sparr interpolation theorem
[PS] was given. The method and some results of this rather unaccessible paper are
presented in [BK2, Section4.2, P]. Complemented approximation families were
introduced, under the name of VP-systems, by the second named author in order to
prove (1.1) for Banach couples of approximation spaces, see [BSh] and also [BK2,
Theorem 4.3.2]. The decomposition method for nonlinear complemented families
were then studied in [DP].

The interpolation theorem (1.1) has many interesting applications in analysis, a
detailed account of which is out of the content of the present paper. We intend to
discuss this subject elsewhere.

2. Preliminaries

We will introduce and briefly discuss the basic concepts involved in our
consideration.

2.1. Approximation families

Let A= {A: keZi} be a collection of linear subsets in a Banach space X
indexed by d-vectors of nonnegative integer coordinates. The index set is assumed to
be ordered by the coordinate-wise order, that is to say, k</, if k;</; for 1<i<d,
and k</, if, in addition, k#/.

Definition 2.1. (X, .A) is said to be a d-parametric approximation family (briefly, AF),
if for k</
(0} = Agc A S A, . (2.1)
Given the (X, .A), the approximation number of the order k is introduced by
ex(x; X) = inf{||x — a||y : a€ Ax}. (2.2)

These, in turn, define a sublinear operator ey : X =/, (Zi) given by

ea(x; X) = (ex(x; X))geza- (2.3)
It is worth noting that
ea(X)em(z?), (2.4)

where m(Z‘i) is the cone of bounded nonnegative nonincreasing functions on Zfﬁ.

Definition 2.2. (X, A) is said to be complemented, if there exists a family P of linear
projectors Py : X — Ay, keZ‘i such that their norms are uniformly bounded.
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In the sequel we use the notation
1Pl = sup [Pl x- (2.5)

In applications a variant of this notation will be useful.

Definition 2.3. (X, .A) is said to be quasicomplemented, if there exists a family P of
linear operators Py : X — Ay1, keZi satisfying (2.5) and such that

Pix=x, if xed;. (2.6)

Hereafter k + 1 stands for (k; + 1, ..., ks + 1).

Approximation numbers relate to the projectors (or quasiprojectors) Py by the
following (Lebesgue) inequality:

[Ix = Prex| |y < (1 + [[Pllx )ex (x; X). (2.7)
On the other hand, the left-hand side is bounded below by e (x; X) or ex(x; X), if
Py is, respectively, a quasiprojector and projector.

2.2. E-parameters

The next ingredient of the basic concept, an approximation space, is
introduced by

Definition 2.4. E-parameter ® is a Banach lattice (a.k.a. ideal space) of functions
[ Zi — R such that

12ty et (24) (2.8)

and, in addition, for each bounded sequence {f;} < ®

| lim fi|[p< lim |[|fj[|4- (2.9)
j— o j— o

Here KO(Zi) is the space comprising bounded functions of finite support. By the
closed graph theorem the right embedding in (2.8) is, in fact, continuous. The
property (2.9) means that the closed ball of @ is closed under pointwise convergence;
this is usually called the Fatou property.

2.3. Approximation spaces (AS)

Given an approximation family (X, .4) and the E-parameter @ associated with the
index set Z‘i, we now introduce the basic concept.
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Definition 2.5. Approximation space E¢(X;A) is a linear subset of X determined
through finiteness of the norm

[ £, (x,a) = llealx; X)l]g- (2.10)

A straightforward consequence of sublinearity of e4 and the Fatou property of &
is the following statement:

Proposition 2.6. E4(X; . A) is a Banach space continuously embedded in X.
2.4. Category of Banach n-tuples B,

In order to formulate and prove our main result, we need several notions of
Interpolation Space Theory, see, e.g., [BK2, Chapter 2] for a detailed account.

A Banach n-tuple X = (X, X1, ..., X,) is an ordered sequence of Banach spaces
continuously embedded in a Hausdorff topological linear space. The sum and
intersection of X is defined by

S(R) = Xo+ 4+ X, A0 =) X

They are Banach spaces under the norms

X[l 505y = inf{z il s x = xz}7
0 i=o0

/]y = max{||x]ly, : 0<i<n}.
A Banach space X is said to be intermediate for X, if
A(X) o X o 2(X).
Hereafter X & Y means that a Banach space X is algebraically and topologically
embedded in a Banach space Y.

A linear map T : X(X) — X(Y) is called a linear continuous operator from X into Y,
if for each 0<i<n

T(X)< Y,
By the closed graph theorem the norm

Tz 7 = max{[[Tly|lx,y, : 0O<i<n} (2.11)
is finite.

The linear space of all these T equipped with norm (2.11) is Banach; it is denoted
by L(X, Y) or simply L(X), if ¥ = X.

The collection of n-tuples forms the class of objects for category B,, while the
collection of linear continuous operators acting between n-tuples constitutes the class
of its morphisms. Particularly, B, is a category of Banach spaces and linear
continuous operators acting between them, while B is a category of Banach couples,
the most developed object of Interpolation Space Theory.
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An interpolation functor F on B, maps this category into By such that F(X) is an
intermediate space of X and F(T) for TeL(X, Y) is the restriction of T to F(X).
This definition implies the interpolation inequality

T |zl zcn 7 <ClITllg 7 (2.12)

with C>1 independent of X, ¥ and T. The optimal C is denoted by Cr.

The functor is exact if Cx = 1. Trivial examples of exact interpolation functors are
X:X-2(X), 4: X>A(X)and n; : X— X;, 0<i<n. More substantive examples will
be introduced below.

At last, we consider a simple property of interpolation functors that will be used in
the sequel. To this end let us define the direct sum of Banach spaces X, Y as the linear
space

X®Y ={(x,y) : xeX, yeY}

equipped with the (Banach) norm
H(XJ’)HX@Y = HXHX + ||)’HY

Using this we define the direct sum of two n-tuples by
Yot =XdY, ... X,®Y,).

Let now F be an interpolation functor on B,,.

Proposition 2.7. Up to equivalence of the norms
FX@Y)=FX)®F(Y (2.13)

with the constant of equivalence depending only on Cx. In particular, (2.13) is an
isometry, if F is exact.

Proof. It is easily checked that
JXoYV)=2X)@2(Y). (2.14)

Then the canonical injection iy: X—>X®Y maps X(X) into X(X@Y)=
Z(X)®ZX(Y) and therefore F(iy) = igl sy, is an injection of F(X) into F(X@® Y).
Similarly, the canonical projection pg: X® Y- X maps X(X@ Y) = Z(X) ®2(X)
onto X(X), and therefore F(py) = px|r(ze 7 15 a projection of F(X@® ¥) onto F(X).
Besides, pgoiy = 13 and therefore F(pg) o F(ig) = 1 (5. The same is true for the
canonical mappings py and iy. Hence F(iy) and F(iy) are the injections of,
respectively, F(X) and F(Y) in F(X@®Y), while F(py) and F(py) are the
projections of F(X@® Y) on, respectively, F(X) and F(¥). Besides, the correspond-
ing products are the identities of F(X) and F(Y). This immediately implies
2.13). O
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2.5. Splitting interpolation functors

Let Sn(Zi) be a subcategory of B, comprising n-tuples of E-parameters as its
objects. Given ®e&,(Z%) and XeB,, one introduces the n-tuple

D(X) = (Do(Xp), ..., Du(Xy)). (2.15)
Here &(X) is a Banach space of vector-valued functions f : Zi — X given by

I llaxy = AV x)reze o (2.16)

Definition 2.8. Interpolation functors F on B, splits ®(X) if
F(D(X)) = F(2)(F (X)) (2.17)

with equivalence of the norms.

Several important functors on 3; possessing this property were discovered by A.
Calderon and Lions and Peetre (see, e.g., [BK2, Section 4.3] and references therein).
The Calderon theorem asserts the splitting property for the upper complex functor
C", 0<n<1, and gives a constructive description of the space C"(®), ® := (P, D).
In the case of de&(Z%) it implies that

C'(2(X)) = &(C"(X)), (2.18)
where
=, " @] (2.19)

is the Calderon operation on couples ¢ of Banach lattices. Let us recall that @ is a
Banach lattice defined through the norm

/1l = inf{Ifolla," Aill3, = UF1 = ol ™" 1fil"}- (2.20)

It is worth noting that @ is also an E-parameter. In fact, condition (2.8) is clearly true
for @. The Fatou property of @ is known to be equivalent to the duality relation
@" = @, where @' is the Banach lattice associated with @. In our case @' is defined
through the norm

[[f{lgr = sup Z fk)gk)| :|lgllp<1

ker’r
According to the general duality theorem, due to Lozanovski [L],
(@) " @) = (5)'"(@))".

Hence @ has the required property, provided @, @; have.

We now introduce the €’ on B,, 0 = (0, ...,0,), where 6;>0 and Soioli=1,
using the following general iterative procedure.

Let Fi,...,F, be interpolation functors on the category of Banach couples B;.
One introduces an interpolation functor F .= F| x F;, x --- x F, on B, inductively
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by setting
(.7:1 X o0 X Fn)(X) = fl(Xo, (fz X -oe X fn)(Xl, ,Xn)) (221)
It is easily verified that (2.20) defines an interpolation functor on B, with the
interpolation constant bounded by []7_, Cr,. To clarify the choice of parameters in
our definition of €’ as a product (2.19), we introduce the following notion.
Interpolation  functor F on B, is of the power type 0=
(o, ..., 0,),0;,>0, >% 0; =1 if for each TeL(X,Y) the following interpolation
inequality:

n

0;
171z r0n <€ TT (1T L llx, v) (2.22)
i=0

holds with a constant independent of 7.

Proposition 2.9. If F; is an interpolation functor on By of the power type (1 —

n:s1;), 1<i<n, then the functor in (2.21) is of the power type 0 = (0y, ..., 0,) where
0 = nony -0 (1 = nig1); (2.23)

here ny =1 and n, ., = 0.
Proof. Use induction on n. [
This proposition motivates our next

Definition 2.10. Let 0 = (0y, ...,0,), 0;>0, >7 (0, =1, and 5, I<i<n be the
(unique) solution to the system of equations (2.23). Then the upper complex functor
¢’ is given by

Cl=C" x ™ x - x Ch. (2.24)

For the case of n-tuples of E-parameters CH(@) can be computed through the
Calderén operation ¢ == digo -~~<I)2" which is introduced similarly to (2.20). Actually,

according to the Calderon theorem, C'(®y, ;) = (15(1)7"@’1’ with the constant of
equivalence for the norms bounded by 2. Therefore induction on 7z straightforwardly
yields the relation

with the constant of equivalence bounded by 2”. In turn, the splitting result (2.18)
combined with induction on n immediately gives

Proposition 2.11. It is true that
(X)) = B(C"(X) (2.26)
provided @eSn(Z‘j;) and XeB,.
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Applying construction (2.21) to the real interpolation functors Xm«,q with #,€(0,1)
given by (2.23), one then can use the obtained functor to set the respective splitting
result. The starting point here is the Lions—Peetre theorem which, in particular,
implies that

(é(/‘_f))n,q = 45()(,”1),
here @ = @(1)7"@']’ and E-parameters @, ®; are weighted 7, spaces with distinct p’s.
Unfortunately, the last condition brings unnecessary restrictions into the final result.
For this reason we prefer to use another generalization of the real functor introduced

through the notion of K-functional on B,. Let us recall its definition: for xe X(X) and
te Rl’H—l
i

K(t;x; X) = inf{z tllxilly, s x = x,}. (2.27)

i=0 i=0

The required functor on B, is denoted by Ry,, 0,>0, Y7 0, =1, 1<g< o0, and
introduced through the norm

1
K(t;x; X)\! a
¥l = { /R (%) dH} | (2.28)

where 1/ =[], lf", and dH = d;:—f’ is the (Haar) measure on (R \{0})""".
The splitting result for Ry, was due to Sparr [Sp, Theorem 8.2]. In the case of the
E-parameters @; given by norms of the form

P

p=1 Y Wkl (k)) (2.29)

d
keZf

1/

with 1<p< oo and a positive weight w, the Sparr theorem gives the equality
Rog(B(X)) = & (R (X)), (2.30)
provided @; := /. It is worth noting that in this case
50 _ ow
=1y, (2.31)

o n 0; 1. n 0
where w = J[;_y w;" and ;=37 .

2.6. n-tuples of approximation spaces

Let XeB, and A = {4, : keZ‘i} be an approximation family in X(X). We say
that A is AF in X, if each Xin A is AF in X;, 0<i<n. Here

XnA={XnA:kez}.
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If now @eEn(Zi), then we introduce an n-tuple of approximation spaces by
Ez(X;A) = (Ep,(Xo; XonA), ..., Eg, (Xu; X0 A)). (2.32)

Similarly to Definitions 2.2 and 2.3 we introduce

Definition 2.12. (X, A) is complemented if there is a family P == {Pye L(X) : keZi}
such that Py[y. is a projection on X;n 4y, 0<i<n, keZ‘i, and, besides,

1Pllg = sup [Pell g < + 0. (2.33)

Replacing here Py|y. by a mapping on Ay N X; preserving Ay, we introduce the
notion of quasicomplemented AF (X, A).

3. The main result

The result concerns approximation spaces generated by 4F’s of a special form. In

order to introduce them we use a set A = {A': 1 <i<d} of AF’sin an n-tuple X and
a covering k of N(d) = {1, ...,d} by (ordered) subsets which do not contain each

other. To simplify the notations we assume all the A’ to be one-parametric, i.e.,
A = {Al :keZ.}; the general case can be derived by the very same argument.
Given A and «, one introduces the desired A = {4 : keZi} by

A=) (Z A;‘q>, k=(ki,....ka)ez . (3.1)

WEK iew

Let now ®e&,(Z%) and w =N(d). Then one defines a subtuple &,, of & as follows.
For the E-parameter @ associated with Zi one denotes by @,, its (closed) subspace

comprising functions of variables k; with iew. This, clearly, is an E-parameter
associated with the ordered Abelian semigroup

29 = {(ki)ic,, - ki€ 2y }; (3.2)
recall that wek is a subset of N(d) inheriting its order. Then we let
Doy = ((D0) s -ov» (Pn),,)- (3.3)

The conditions of the theorem also involve operators S, defined on finitely
supported functions f : Z9 — R by

(Suf)k) =" f(£), keZ?. (3.4)

l=k

We say that S,, is bounded in ®, if it can be continuously extended to X(®,,) and
this extension belongs to L(®,,). This, in particular, implies that for f'e X(®,,)

)<+ . (3.5)
l
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Given (X, Ai), 1<i<d, @ and «k, one introduces now the assumptions for the main

theorem.

(a) Each (X, A") is complemented and P' = {Pi e L(X) : keZ.} is the correspond-
ing family of projections.

(b) Projections of distinct families 7’ commute.

(c) Each operator S,, with wex is bounded in .

Under these conditions the following is true.

Theorem 3.1. If an interpolation functor F splits each n-tuple ®,(X), wek, then it
also splits the n-tuple Eg(X; A) with A defined by (3.1), that is to say,

F(Eg(X; A)) = Ex)(F(X); A) (3.6)

with equivalence of the norms.

Proof. We begin with the following auxiliary result. Let A” = {4 : keZ9}, wek,
be AF in X defined by
A=Y Aj. (3.7)
iew
In this case e 4o, see (2.3), is a function of variables k;, iew. Let us consider an »n-
tuple of AS’s E; (X; A”); we simplify this notation by putting
E3(X; A) := Eg (X; A”). (3.8)

Proposition 3.2. There exists a morphism R, in the category B, that maps E(%’(X ; A) in
®,,(X) and possesses a right inverse morphism.

Proof. Set for ke Z7
Pe=1-J] (1 -P)). (3.9)
iew
The commutativity condition (b) implies that Pra = a for aeAj(l_, iew. Hence P isa

projection on Y

iew A, = Ak, keZ?, and the following is true.

Lemma 3.3. (X, A”) is complemented and P® = {Py : keZ%} is the corresponding
family of projections.

To introduce the required morphism R,, one sets for ke Z¢
R =[] P, and R := [[ Pi. (3.10)
iew ieo\{j}
By the commutativity condition
Ry =P, R, ico. (3.11)



L Asekritova, Y. Brudnyi | Journal of Approximation Theory 129 (2004) 182-206 193

Since P} is a projection on A} := {0}, see (2.1), one also gets

Ry =0, if mink;=0. (3.12)

iew
Define now R,, on finitely supported vector-functions f : Z% — X by

Rof =3 Rinif(k): (3.13)

kez?

here k + 1 := (k; + 1),.,, and X is an intermediate space of X.
Let now G be an interpolation functor on B,; let also

@ =G(d,) and X =gG(X). (3.14)

We will show that R,, is defined by (3.13) for all fe®(X). In fact, by the condition
(c), Sye L(®,,) and therefore the interpolation inequality (2.11) yields

1S0]le < CollSollg, < + . (3.15)
This, in turn, implies for f'e ®(X) the inequality

IRy < + oo,

kez9
see (3.5). At last, R, e L(X) and therefore

1Ry < CollRel g < Cg [T 1Pl (3.16)

iew

Hence the series in (3.13) is absolutely convergent and R,, is defined for all f'e &(X).

Lemma 3.4. R, maps ®(X) in E¢(X;A”) and its norm is bounded by a constant
dependent only on the amounts in the right-hand side of (3.15) and (3.16).

Proof. For keZ% one sets
k] =2\ {¢eZ :ti>ki— 1, icw}.
Let us show that the element
Vi = /z[;] R f(7), [ed(X)
/e

belongs to Aj. To this end one presents [k] as the disjoint union of the sets Q :=
{teZ? i<k} and Q; = {/eZ? : /,~>k- — 1 and ¢;<kj, j#i}, iew. By (3.11),

Z Ren f(4 Z Z Pz

/e iew [i<k;

where z, are suitable elements from X. The latter sum, clearly, belongs to
Dico o<k, A% CZiew Aj. =: Ay, see (3.7) and (2.1). In turn, for a suitable z;€ X

DD Reaf(0) =) Pi () edr.

iew [eQ; iew
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Hence yy € A and therefore

er(Rof; X) =€k<z Z Rf+1f(/);X>

ieo (i>ki—1

< sup [[R[lx D WOy = CSollf 1lx) (k).

=k

Here and below C stands for a constant depending only on unessential parameters
that can vary from line to line. Taking here ®@-norm and using the inequalities (3.16)
and (3.15), one gets

RS |, (x:a0) = 1(ex (RS X))ol
< |[Solle 1o <cllf llow-

The proof is complete. [

Apply this lemma to the case of Gequalto X : X—X(X) and n; : X— X;, 0<i<n,
respectively. Then it implies that R, is a morphism of the category B, mapping
EZ(X;A) in &,,(X). Besides, its norm is bounded by a constant depending only on
IS0l and |[P']|g, i€w.

To complete the proof of Proposition 3.2, it remains to introduce a morphism
which is right inverse to R,. To this end one defines the operator of mixed
differences A given on the family of projectors P, eP®, see (3.9),

AP, = H (Prre, — Pr), (3.17)
iew
where {ei}ﬁlzl is the standard basis of R?. By commutativity of P;’s this can be
rewritten in the form
APc= Y ()P, (3.18)
ve{0,1}%

where ¢(v) is the number of zero coordinates of v.
Define now, up to sign, the required right inverse P,, on elements of Z(E%(X; A))
by

Pux = (Apk)kezi- (3.19)
Under the notations of Lemma 3.4 the following is true.

Lemma 3.5. P, maps E¢(X; A”) in ®(X) and its norm is bounded by a constant
depending only on Cg, ||Sy||s and ||P'||5, icw.

Proof. According to (2.7)
[Ix = Prxl [y < (1 + |[Pl] y Jex (x5 X). (3.20)
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Together with (3.18) this gives

faziles (1450 1Pl ) S et )
k ve {01}

Since the translation operators f (k) — f (k +v), ve{0,1}” are bounded on the set of
positive f by S,f, their norms in @ are at most ||Sg||4. Therefore

xllo

<20 (1 + sup ||Pk||x) 1Sl 1 e 065 X))z

1PoX[logx) = I (4Pkx)gcz0]

@
= C||x||E¢(X;A"’)'

By (3.15) and (3.16) C is bounded by a constant depending only on the desired
parameters. [

Using, as before, this lemma for the case of G equal to X and m;, iew, one
concludes that P, is a morphism of B, which maps E9(X; A) in ®,(X), and its norm

is bounded by a constant depending only on [|S,||s and ||P'||g, i€w.
Let us now establish that, up to sign, the morphism P,, is a right inverse to R,,. It
suffices to prove that

RoPox = (—1)"'x, (3.21)
provided xe X(E2(X; A)). To this end one begins with the identity

S ARx=>" (-1)Ryx, kez?, (3.22)

<k ve Vi

where V}, is the set of vertices of the parallelepiped {xeR” : 0<x;<k;} and ¢(v) is
the number of zero coordinates of v. Since R, = 0 if min;c,, v; = 0 (see (3.12)), the
right-hand side of (3.22) equals Ryx = (Ryx — x) + x. Besides, by (3.10) and (3.20),
we obtain for X = X(E2 (X;.A)) the inequality

1Rex = xlly< 3 (H 1 ||X) =Py xle<C Y e (i),
lew J>1 LEW
with C depending only on ||P||5, i€, see (3.16) for G = X. Since A}'{’_ = Ay, (see
(3.7) and |[So||54,) <|Swll5, < o0, the right-hand side of the above inequality tends
to zero as each k; becomes +oo, see (3.5) for f(/) =e,(x;X) and @ = X(D,,).
Together with (3.22) this yields

lim Y~ AR, x = x (3.23)
<k

as min;¢,, k; becomes infinity.
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Now definitions (3.13) and (3.19) of R, and P, and the identity

AP =4 (1 -1La- PZJ) = (-4 <H Pi,) = (~1)""ar,

iew iew

yield R,P, = (—1)’17l 2 Ry 14Ry.. Besides, (3.18) and the monotonicity of the
family of projections Ry give

RicidRe = > ()RR = > (=) Ry = ARy
ve{0,1}” ve{0,1}”

Combining this with the previous identity and then applying (3.23), one gets

RoPox = (1) Y ARx = (-1)" .
k

Thus (—l)dfle is a right inverse to R,,.
Proposition 3.2 has been proved. [
We continue the derivation of Theorem 3.1 by the following result. In its

formulation k,, = (k;);.,, €Z% whenever keZ¢.

Lemma 3.6. The equivalence

ex(x, X))~ Z ek, (x; X) (3.24)
wek

holds with positive constants independent of keZ% and xe X (= G(X)).

Proof. According to (3.1) and (3.7)

AkmDAk = m <Z A;;i) = ﬂ Ak(,ﬁ

wek iew wek

this implies the first inequality (3.24) as one gets

> e, (x5 X) < [klex (x; X).

wek

To establish the inverse inequality, one introduces for a given keZﬂ the operator

Pi=[] P (3.25)

WEK
where Py, is the projection on Ay, defined by (3.9). Since the operators of the
product in (3.25) commute, Py is a projection on (), ., Ak, =: Ar. Besides, Py eL(X)
and its norm is bounded by a constant depending only on ||P||¢, 1<i<d, and Py|y
is a projection on AxNJX;, 0<i<n. Therefore, Py|, == Pk|g()?> belongs to L(X),
its norm is bounded by ||Px||s, and it is a projection on AxNX. Thus, for xe X
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we have
e (x; X) < |]x = Pex|[y <C > [lx = Pix||y
WEK
<SCY L (141Pslln)er, (5 X)<C Y e, (x5 X),
WEK WEK

where C depends only on Cg and ||P||y, 1<i<d. O
We will now define the direct sum of the spaces ES(X;.A), wek. Let us recall that
the norm of x = (X)), c, I @per EH(X;.A) is given by

| x]] = Z [[Xo] EQ(X;A)) (3.26)

WEK

while E3(X;.A) is defined by (3.8) with n = 0. In this definition x is assumed to be
ordered in some way, and X = G(X).

Denote then by Dg(X) a “diagonal” of that direct sum comprising elements
(Xw)pex such that x,, = x for all wex and some x from (., E3(X;.A). It is easily
seen that Dg(X) is a closed subspace of the direct sum.

WEK

Lemma 3.7. The space Eg(X;A) is isomorphic to Dg(X) and the constants of
isomorphism depend only on Cg and ||P'||5, 1<i<d.

Proof. In virtue of (3.24) and (3.8)
16l £y ) = [eate Dllox Y llear (x5 X)lg, =Y Ix]

WEK wek

EQ(X;A)

Recall that @, is the closed subspace of @ comprising functions of variables
ki, iew. Then the mapping [ : x> (x,) where x, := x, yields the required
isomorphism. [

WEK?

Using now the operators R, and P, of Proposition 3.2 one constructs the
operators

R=@ R, and P:=(p P, (3.27)

WEK WEK

that is to say, P sends an element (x,),., from @,c. £ (X) in the element
(PuXw)ye, While R acts similarly in the opposite direction. Using now the
isomorphism 7 : E¢(X; A)— Dg(X) from the previous lemma, one sets

P=PI, R=TI"'R
Then R: @ yex Po—Es(X;A) and P: E¢(X; A)— @ pex P, and the norms of
these operators are bounded as required. Besides, by Proposition 3.2
RP=TI"'RPI = +1p,x.a). (3.28)
Taking now G to be the functors X— X(X) and X— X;, 0<i<n, respectively, one

establishes that the mapping R is a morphism from @ ¢, ®,,(X) into Ez(X;.A), and
P is a morphism acting in the reverse direction. Recall that the n-tuple &, is defined
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by (3.3). Besides, by (3.28),

We are now in a position to finalize the proof. Let F be an interpolation functor
on B3, subject to the splitting condition

F(P,(X)) = F(P,)(F(X)), wek. (3.29)

Let xeF(Es(X;A), and let @ = F(P), &, :=F(d,) and X = F(X). By
Proposition 2.7, the interpolation inequality (2.11) and the splitting condition
(3.29) one has

1P| (@0 b0 S C”px”ea F(0 (X))

< C||15x\|@ oy (0) < ClIXN gy (x:)-
Here C depends only on Cr and the norm of morphism P. Applying now (3.28) one
obtains

1512, () = IRPX]| 25 ) < CUP| (g, )
Together with the previous inequality this yields the embedding
Ep(X; A) = Epg)(F(X); A) = F(Eg(X; A)).
The inverse embedding is derived in exactly the same fashion. Actually, one has

x| gy ) = IRPx]| z, . <C||ﬁx||@ @, (X)

< ClPx| (g, b, 00) < ClIXl 75,50

and the inverse embedding is also established.

The proof Theorem 3.1 is complete. [

Concluding Remarks 3.8. (a) Theorem 3.1 remains to be true for quasicomple-
mented families (X, Ai), 1<i<d, as well. The only change of the proof is as follows.
We now define R, (see (3.13) by

Rluf = Z Rk+2f(k)a

kezZ?

where k + 2 == (k; + 2, ..., ks + 2). Then the set [k] in the proof of Lemma 3.4 has to
be defined as the complement of the set {/eZ} : /;>k; — 2}.

Under this modification the derivation of Theorem 3.1 yields the required result
for the quasicomplemented AF’s.

(b) Strictly speaking, our definition of 45 imposes one more assumption on the
functor F: the Banach lattice F(®) is an E-parameter, provided that each @; is. The
functors used in the present paper do have this property. But we can remove this
assumption in another way by modifying the definition of 4S. In this new definition
& is a Banach lattice satisfying the only condition (2.8), and E4(X;.A) is introduced
by (2.10). Then F(®) is a Banach lattice satisfying (2.8) but E¢(X;.A) may be
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incomplete. We will say that E4(X;.A) is A4S, if it is complete. Under this definition
Theorem 3.1 holds without additional assumptions on F.

4. Examples and applications

All our examples concern Besov spaces and their generalizations of various types.
Their presentation as AS’s is based on results going back to the classical S.
Bernstein’s and D. Jackson’s theorems of trigonometric approximation. In what
follows most of these results will be used in a form related to approximation in
translation invariant Banach lattices rather than in L,. Such a generalization does
not require new ideas and can be derived by the very same argument as in the case of
L,, see, e.g., [Sh, Section9.3], where a similar extension is introduced. It is worth
pointing out that the interpolation theorems presented below remain to be new even
in the case of L,-spaces.

4.1. Isotropic Besov spaces

Let B be a one-parametric approximation family consisting of the linear subsets
Ao = {0} and A; = Bx(RY), k=0,1,2,.... Here B,(R“) is the Bernstein class of
bounded on R’ entire functions of exponential type and degree <. Then for the
classical Besov space B (R?) the following is true:

BIWR) = Ep s (Ly: B), (4.1)

where the E-parameter is given by
1

0 q
Wil gz = {Z |2S"'f(k)|"} . (42)
k=0

Besides, B is a quasicomplemented in an n-tuple (L, ...,L, ) and the respective
quasiprojectors Pj are the (Vallee—Poussen) operators, that is to say,
Pief =y * f, (4.3)

where ,(x) = Y (1x), 1>0, and its Fourier transform v is a test function
supported by the Euclidean ball {¢e (RY)" : |¢|<2} and equals 1 if |¢| < 1. The proofs
are presented, e.g., in [N]; they can be ecasily adapted to the case of translation
invariant Banach lattices possessing the Fatou property. The only essential fact that
should be used in this adaptation is the generalized Minkowski inequality for a
Banach lattice X with the Fatou property. It asserts that

Feen)dut)|| < [ ey dut),

for a nonnegative bounded Borel measure p and the function x — f(x, y) belonging to
X for u-almost all y, see, e.g., [KPS, Section II.3].

‘ R
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So, in the sequel X and X are, respectively, a translation invariant Banach lattice
on R? with the Fatou property and an n-tuple of such lattices. It is more convenient
for now to write B*(L,(R?)) instead of By (R?) and so on. Hence we have , under
this notation,

B(X) = Epyz.)(X; B). (4.4)

Besides, B is quasicomplemented in X and the respective quasiprojectors are given by
(4.3). These facts lead to the following results.

Corollary 4.1. For the upper complex method C° on B,, see (2.23), the isomorphism
C'(B™(Xp), ..., B (X,)) = BY(X) (4.5)
holds with

s = 05, q ' = Z 0,—6],-_1 and X = XV. (4.6)

i=0 =
Proof. By (4.4), the left-hand side of (4.5) equals CY(Egz(X;B)) with &, =
/3(Zy), 1<i<d. Since the functor C? splits ¢(X), see (2.26), one can apply the

variant of Theorem 3.1 presented in Remark 3.8 (b). In this case A consists of the
single family B, i.e., d = 1 and k = N(1) = {1}. The corresponding integral operator
S{1y is given by

(S (k Zf , kez.. (4.7)
=k

The Holder inequality implies that Sy, is bounded in /‘;(L_), if s>0and 1<¢g< .
Hence the aforementioned variant of Theorem 3.1 implies the equality

C'(E5(X:B)) = Eg(C"(X); B).
To complete the proof it remains to show that

C"(X)=X" and &' =ri(Z,),
where s and ¢ are given in (4.6). The former equality follows from the validity of this
result for couples of Banach lattices with the Fatou property [C] and induction on ,
cf. the proof of Proposition 2.11. The latter one follows, for n = 1, from (2.20) and

the Holder inequality; the case n> 1 is then derived by induction.
Combining now all these facts with (4.4), one gets

C'(BY(Xy), ..., B¥(X,)) = Ep (X'; B) = BY(X).

The result has been proved. [
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Specially, for X; = L,,,

X = L,, where p = Z ini_l, (4.8)
i=0
see (2.31), and therefore
0 ps Wi\ RS
C(Bpb, ....,By") = B}, (4.9)

where 6-means s, p, ¢ are given by (4.6) and (4.8).
Let us now apply the very same argument to the case of the real interpolation
functor Ry, see (2.30), and use the result asserting that

RO‘!(LPO’ "'7Lpn) = Lpt]7 (4.10)

where p is as above and L,, is a Lorentz space. Formula (4.10) can be
straightforwardly derived from Proposition 9.3 and Theorem 9.3 from [Sp], see
also [E], where this was established for n = 2 in another way. Then we immediately
obtain

Corollary 4.2. Under the above notations,

Rog(BLO, ..., B) = BY(Ly,). (4.11)

po

Specially, the right-hand side is B, if ¢ =p.

4.2. Anisotropic Besov spaces

To avoid unessential but cumbersome details we confine ourselves to the case of
periodic functions. So X is now a translation invariant Banach lattice with the Fatou
property comprising measurable 2z-periodic in each variable functions on R?. The
anisotropic Besov space over this X is determined by smoothness 5 = (si, ..., s;) and
the parameter 1 <¢< oo via the norm

1l gacr) = Ifllx + sup llon (/5 X)) (4.12)
1<i<d
here r>max s; and
oj(t:f;X) = sup |45, flly, >0 (4.13)
0<h<t

is the partial r-modulus of continuity in direction e; = (5;);1:1.

To present this as an AS, one introduces 7 = {T} : ke Z¢}, where T == {0} and
Ty is the space of trigonometrical polynomials of degree at most 2% in x;, 1<i<d.
The following presentation is a well-known classical result for LP(T‘X), see e.g., [T,

Section 6.3.4], and can be ecasily extended to a general X. To formulate it we
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introduce E-parameter /"7, see (2.29), where the weight is given by

d -1
wi(k) = (Z 2—’@*") ., kez?. (4.14)
i=1

Then it is true that
B (X) :Eff;;(X;T). (4.15)

The family 7, in turn, is the intersection of families 7" := {T} :keZ,}, 1<i<d,
that is to say,
d
To=()Ti, kezi. (4.16)
i=1
Here T}, == {0} and T} is the space of quasipolynomials with respect to x; of degree at
most 2%, k> 1. In other words, functions of this space are trigonometric polynomials
in x; of degree 2¥, the coefficients of which are functions from L, (T¢) independent of
Xi.

Furthermore, each 7' is quasicomplemented in an arbitrary n-tuple of Banach
lattices of the type considered here. The required quasiprojectors P, k>1, are
introduced as follows. Let Vy be the classical Vallee—Poussen operator mapping 27-
periodic univariate functions into trigonometric polynomials of degree 2N and
preserving polynomials of degree N, see e.g., [T]. Then, for feL;(TY) the
quasipolynomial Pif e T} 1 18 the result of applying V5« to f regarded as a function
x; with the fixed remaining variables. It is well-known for L,(T“) and can be easily
extended to the general case that

sup{[[P}l]y : keZ.} < oo.

Besides, by the definition, P}; and P}Z, commute if i#7.
Hence we are now in a position to apply the variant of Theorem 3.1 from Remark
3.8 (a). In this case x is the partition of N(d) into one point subsets {i}, 1<i<d, and

¢ = (£o0(29), ...,.0% (21)),

see (4.15). Note that for @ := /"7 the corresponding E-parameter @y;, consists of
functions from @ depending only on k;. Hence
Dy =105 (24),

see (4.2) and (4.14). The corresponding n-tuple ‘13{1‘} is formed by E-parameters
£%(2%), provided 5; = (sj,-);j:l.

At last, the operator Sy, from (3.4) with @ = {i} coincides with that in (4.7).
Therefore Sy;y is bounded in each /;(Z+) with s>0 and 1<¢g< oo and it then follows
that Sy is bounded in @.

Applying now the aforementioned variant of Theorem 3.1 to the case (4.15) and
repeating with a trivial modification the argument of proof for Corollary 4.1, we
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immediately get the next relation:

CU(BY™ (X0), .., B (X,)) = Epe 70, (X'; T), (4.17)
where
W= H (w5)" (4.18)
i=0

The similar argument can be applied in the case of the real interpolation method.

Remark 4.3. It is ecasy to show that the right-hand side of (4.17) embeds into
B> (X?) with 5 given by (4.6).

Remark 4.4. To apply Theorem 3.1 to the general situation, we have to present the
space B%(X) with arbitrary ¢ as a d-parametric A4S of a form E,., @) (X). Surprisingly,

we have to solve a nonlinear algebraic equation to find the parameters for w.
4.3. Spaces with dominated mixed difference

In this subsection we also consider only the case of periodic functions leaving to
the reader the case of functions on RY. Besides, the basic approximation facts related
to our interpolation result were proved in [B] only for X = L,,(T]'d)7 1<p< o0, and
their extension to more general Banach lattices requires some additional argument
(see concluding remarks).

To introduce our main object, we need the notion of mixed modulus of continuity
of order keZi. Recall that it is given for feLp(TTd) by

- k d
wk(l§f;Lp) = sup ||Ahf||p7 Z€R+' (419)

0<h<t

The mixed difference of this definition is introduced as a product of partial
differences, i.c.,

d
k . ki
Ak = H Ay
i=1

The space of interest A;ff with 5= (s1,...,84), ;>0 and 1<p, g< oo consists of

functions f e L,(T¢) whose norms
WLy == 11, + oG5 Lol ze) (4.20)

are finite. Here k;>s;, 1<i<d, and the E-parameter on the right is given through
the norm

==

1/

aa = SO0

d
(e’
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The basic approximation result related to this space involves the d-parametric AF
T7Q = {TQy : keZ"} with

d
TQ: = TF,
i=1

where T}, keZ, is the space of quasipolynomials introduced above, see (4.16) and
the subsequent text. The required result asserts that up to equivalence of the norms

A = Eps (g1 (Lp; TQ), (4.21)
see [B].
In turn, 7Q is quasicomplemented in each n-tuple (L, ..., L, )(T?), 1<p;< o0,
and the corresponding family of quasiprojectors is introduced by

d
o= 1-[[ (- P, kezt,

i=1

where Pi, keZ. were defined in the previous subsection via the Vallee—Poussen
operators.

Hence we can now apply, as before, the variant of Theorem 3.1. In this case the
covering k consists of the single set N(d), and the corresponding operator

(Sn@/) k) =>" f(0), keZi
(>k
is bounded in each space /‘Z(Zi) with s; >0 and 1 <¢< o0, by the Hblder inequality.

Using the same argument as in the previous cases, we then immediately obtain the
following results.

Corollary 4.5. Up to equivalence of the norms
0 <0 n N -
C(A, T, Ay 1) =A™, (4.22)

po

where 0-means 3,p, q are introduced as in (4.6) and (4.8).

Corollary 4.6. Up to equivalence of the norms

Rog(A0, ... YY) = A%, (4.23)
where 3, p, q are as above, and the space on the right-hand side is defined by (4.19) and
(4.20) with L, replaced by the Lorentz space L.

Particularly, the right-hand side is A;_‘], if g=p.

4.4. Concluding remarks

(a) Using approximation by univariate splines with uniformly distributed knots and
their tensor products, one can extend all the interpolation results presented



(b)

©

(d)
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above to the case of nonperiodic functions defined on d-cubes, bounded or
unbounded.

Derivation of (4.21) presented in [B] can be easily adapted to the case of mixed
L; space with p = (p1, ...,pq). Hence (4.22) remains valid with p; replaced by
vectors p'. The resulting space A;;q with p being 0-mean of 5’ is defined by (4.20)
with L, replaced by L;.

Using the Calderon—Mityagin interpolation theorem [M], it is possible to extend
(4.21) to the case of rearrangement invariant spaces over T¢ or d-cube and in
this way to extend Corollary 4.5 to this class of Banach lattices.

At last, one can consider in the same fashion the case of A-spaces determined by
a given set of mixed moduli of continuity.
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