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Abstract

We prove a general interpolation theorem for linear operators acting simultaneously in

several approximation spaces which are defined by multiparametric approximation families.

As a consequence, we obtain interpolation results for finite families of Besov spaces of various

types including those determined by a given set of mixed differences.

r 2004 Published by Elsevier Inc.

1. Introduction

The main objective of the present paper is a general interpolation theorem for
finite sets of approximation spaces determined by a multiparametric approximation
families. Spaces of this kind are found in several areas of analysis including Sobolev
type embeddings, linear and nonlinear multivariate approximation, and interpola-

tion space theory. Typical examples are ‘‘mixed’’ L %pðRdÞ spaces with %p :¼
ðp1;y; pdÞ; anisotropic Sobolev or Besov spaces and spaces defined by a
‘‘dominated’’ set of mixed derivatives or differences. Some of the results related to
these spaces are simple consequences of the respective one-dimensional facts and
induction on dimension. However, genuine multidimensional results have nothing in
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common with this approach, since most of them are not true for univariate
functions. Typical ones are inequalities for Fourier transform of a function from

anisotropic Sobolev space W %r
1ðRdÞ due to Bourgain [Bo], Pelczynski and

collaborators [PSe,PW], and Kolyada (see survey [K, Section 13.3]).
Unfortunately, proofs of results of this type are mostly long and complicated; we

hope that interpolation space technique presented in this paper may be of
importance for clarifying these proofs and obtaining new results in this area.

The basic concept, an approximation space, appeared as a by-product of the
classical S. Bernstein–Jackson theory of trigonometrical approximation (see, e.g.,
[N,T] and references therein). Abstract approximation spaces were introduced by
Brudnyi and Timan (1959) for the special case of monotone families of linear subsets
fAkg with dim Ak ¼ k; kAZþ (see references in [T]). More general one-parametric
approximation spaces were then introduced and studied by Peetre and Sparr [PS]
(see [BK2, Section 4.2] for references of subsequent papers by I. Asekritova, Yu.
Brudnyi, N. Krugljak, P. Nilsson and A. Pietsch and others devoted to the topic).

The approximation space of the present paper, EFðX ;AÞ; is determined by the

next three ingredients: an ambient Banach space X ; an approximation family A :¼
fAkCX : kAZd

þg and an E-parameter F; which is a Banach lattice of functions on

Zd
þ (see Section 2 for these and consequent notions and notations).

The main problem of the paper is as follows:

Let E %Fð %X;AÞ :¼ ðEFi
ðXi;AÞÞn

i¼0 be an n-tuple of approximation spaces and F be an

interpolation functor on a category of Banach n-tuples.

Problem. Find conditions on A and F ensuring validity of the equality

FðE %Fð %X;AÞÞ ¼ EFð %FÞðFð %XÞ;AÞ: ð1:1Þ

It is not difficult to derive from (1.1) the splitting property of F with respect to the n-

tuple %Fð %XÞ :¼ ðFiðXiÞÞn
i¼0 of the vector-valued Banach lattices. We will show that this

property is also sufficient for (1.1) if, in addition, A is complemented in %X and has a
special algebraic structure. This allows us to derive new interpolation results for n-
tuples of anisotropic Besov spaces and similar objects of this kind. Some of them are
new even for the well-studied case of couples ðn ¼ 1Þ: For example, an anisotropic
analog of the classical real interpolation theorem asserts that

ðB%s0;q0
p0

ðRdÞ; B%s1;q1
p1

ðRdÞÞyq ¼ B%s
pðRdÞ ð1:2Þ

for %s; p; q being, respectively, y-means of ð%s0; %s1Þ; ðp0; p1Þ and ðq0; q1Þ; provided that

q ¼ p and %s0; %s1 are collinear, see [G,Tr, Section 2.13]. The latter condition looks
unnatural; as in many other cases in this area it, in fact, follows from a presentation

of B%s;q
p as a one-parametric approximation space. A d-parametric representation

allows us to find the real and complex interpolation spaces for n-tuples of arbitrary
anisotropic Besov spaces as d-parametric approximation spaces and investigate the
cases of validity of a relation similar to (1.2). A partial case is pointed out in Section
4.2; the general situation will be presented elsewhere.
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The proof of the main result is based on the decomposition method going back to
classical Bernstein’s proof of his inverse theorem. For the first time it was used in
[BK1], where, in particular, a new proof of the Peetre–Sparr interpolation theorem
[PS] was given. The method and some results of this rather unaccessible paper are
presented in [BK2, Section 4.2, P]. Complemented approximation families were
introduced, under the name of VP-systems, by the second named author in order to
prove (1.1) for Banach couples of approximation spaces, see [BSh] and also [BK2,
Theorem4.3.2]. The decomposition method for nonlinear complemented families
were then studied in [DP].

The interpolation theorem (1.1) has many interesting applications in analysis, a
detailed account of which is out of the content of the present paper. We intend to
discuss this subject elsewhere.

2. Preliminaries

We will introduce and briefly discuss the basic concepts involved in our
consideration.

2.1. Approximation families

Let A :¼ fAk : kAZd
þg be a collection of linear subsets in a Banach space X

indexed by d-vectors of nonnegative integer coordinates. The index set is assumed to
be ordered by the coordinate-wise order, that is to say, kpc; if kipci for 1pipd;
and koc; if, in addition, kac:

Definition 2.1. ðX ;AÞ is said to be a d-parametric approximation family (briefly, AF ),
if for koc

f0g ¼ A0CAkkAc : ð2:1Þ

Given the ðX ;AÞ; the approximation number of the order k is introduced by

ekðx;XÞ :¼ inffjjx � ajjX : aAAkg: ð2:2Þ

These, in turn, define a sublinear operator eA : X-cNðZd
þÞ given by

eAðx;XÞ :¼ ðekðx;XÞÞkAZd
þ
: ð2:3Þ

It is worth noting that

eAðXÞCmðZd
þÞ; ð2:4Þ

where mðZd
þÞ is the cone of bounded nonnegative nonincreasing functions on Zd

þ:

Definition 2.2. ðX ;AÞ is said to be complemented, if there exists a family P of linear

projectors Pk : X-Ak; kAZd
þ such that their norms are uniformly bounded.
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In the sequel we use the notation

jjPjjX :¼ sup
k

jjPkjjX : ð2:5Þ

In applications a variant of this notation will be useful.

Definition 2.3. ðX ;AÞ is said to be quasicomplemented, if there exists a family P of

linear operators Pk : X-Akþ1; kAZd
þ satisfying (2.5) and such that

Pkx ¼ x; if xAAk: ð2:6Þ

Hereafter k þ 1 stands for ðk1 þ 1;y; kd þ 1Þ:

Approximation numbers relate to the projectors (or quasiprojectors) Pk by the
following (Lebesgue) inequality:

jjx � PkxjjXpð1þ jjPjjX Þekðx;X Þ: ð2:7Þ

On the other hand, the left-hand side is bounded below by ekþ1ðx;XÞ or ekðx;XÞ; if
Pk is, respectively, a quasiprojector and projector.

2.2. E-parameters

The next ingredient of the basic concept, an approximation space, is
introduced by

Definition 2.4. E-parameter F is a Banach lattice (a.k.a. ideal space) of functions

f : Zd
þ-R such that

c0ðZd
þÞCFCcNðZd

þÞ ð2:8Þ

and, in addition, for each bounded sequence ffjgCF

jj lim
j-N

fjjjFp lim
j-N

jjfj jjF: ð2:9Þ

Here c0ðZd
þÞ is the space comprising bounded functions of finite support. By the

closed graph theorem the right embedding in (2.8) is, in fact, continuous. The
property (2.9) means that the closed ball of F is closed under pointwise convergence;
this is usually called the Fatou property.

2.3. Approximation spaces (AS)

Given an approximation family ðX ;AÞ and the E-parameter F associated with the

index set Zd
þ; we now introduce the basic concept.
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Definition 2.5. Approximation space EFðX ;AÞ is a linear subset of X determined
through finiteness of the norm

jjxjjEFðX ;AÞ :¼ jjeAðx;XÞjjF: ð2:10Þ

A straightforward consequence of sublinearity of eA and the Fatou property of F
is the following statement:

Proposition 2.6. EFðX ;AÞ is a Banach space continuously embedded in X.

2.4. Category of Banach n-tuples Bn

In order to formulate and prove our main result, we need several notions of
Interpolation Space Theory, see, e.g., [BK2, Chapter 2] for a detailed account.

A Banach n-tuple %X :¼ ðX0;X1;y;XnÞ is an ordered sequence of Banach spaces
continuously embedded in a Hausdorff topological linear space. The sum and

intersection of %X is defined by

Sð %XÞ :¼ X0 þ?þ Xn; Dð %XÞ :¼
\n
i¼0

Xi:

They are Banach spaces under the norms

jjxjjSð %XÞ :¼ inf
Xn

i¼0

jjxijjXi
: x ¼

Xn

i¼o

xi

( )
;

jjxjjDð %XÞ :¼ maxfjjxjjXi
: 0pipng:

A Banach space X is said to be intermediate for %X; if

Dð %XÞ+X+Sð %XÞ:
Hereafter X+Y means that a Banach space X is algebraically and topologically
embedded in a Banach space Y :

A linear map T : Sð %XÞ-Sð %YÞ is called a linear continuous operator from %X into %Y;
if for each 0pipn

TðXiÞCYi:

By the closed graph theorem the norm

jjT jj %X; %Y :¼ maxfjjT jXi
jjXi ;Yi

: 0pipng ð2:11Þ

is finite.
The linear space of all these T equipped with norm (2.11) is Banach; it is denoted

by Lð %X; %YÞ or simply Lð %XÞ; if %Y ¼ %X:
The collection of n-tuples forms the class of objects for category Bn; while the

collection of linear continuous operators acting between n-tuples constitutes the class

of its morphisms. Particularly, B0 is a category of Banach spaces and linear
continuous operators acting between them, while B1 is a category of Banach couples,
the most developed object of Interpolation Space Theory.

ARTICLE IN PRESS
I. Asekritova, Y. Brudnyi / Journal of Approximation Theory 129 (2004) 182–206186



An interpolation functor F on Bn maps this category into B0 such that Fð %XÞ is an

intermediate space of %X and FðTÞ for TALð %X; %YÞ is the restriction of T to Fð %XÞ:
This definition implies the interpolation inequality

jjT jFð %XÞjjFð %XÞ;Fð %YÞpCjjT jj %X; %Y ð2:12Þ

with CX1 independent of %X; %Y and T : The optimal C is denoted by CF :
The functor is exact if CF ¼ 1: Trivial examples of exact interpolation functors are

S : %X-Sð %XÞ; D : %X-Dð %XÞ and pi : %X-Xi; 0pipn: More substantive examples will
be introduced below.

At last, we consider a simple property of interpolation functors that will be used in
the sequel. To this end let us define the direct sum of Banach spaces X ;Y as the linear
space

X"Y :¼ fðx; yÞ : xAX ; yAYg

equipped with the (Banach) norm

jjðx; yÞjjX"Y :¼ jjxjjX þ jjyjjY :

Using this we define the direct sum of two n-tuples by

%X" %Y :¼ ðX0"Y0;y;Xn"YnÞ:

Let now F be an interpolation functor on Bn:

Proposition 2.7. Up to equivalence of the norms

Fð %X" %YÞ ¼ Fð %XÞ"Fð %YÞ ð2:13Þ

with the constant of equivalence depending only on CF : In particular, (2.13) is an

isometry, if F is exact.

Proof. It is easily checked that

Sð %X" %YÞ ¼ Sð %XÞ"Sð %YÞ: ð2:14Þ

Then the canonical injection i %X : %X- %X" %Y maps Sð %XÞ into Sð %X" %YÞ ¼
Sð %XÞ"Sð %YÞ and therefore Fði %XÞ ¼ i %XjFð %XÞ is an injection of Fð %XÞ into Fð %X" %YÞ:
Similarly, the canonical projection p %X : %X" %Y- %X maps Sð %X" %YÞ ¼ Sð %XÞ"Sð %XÞ
onto Sð %XÞ; and therefore Fðp %XÞ ¼ p %XjFð %X" %YÞ is a projection of Fð %X" %YÞ onto Fð %XÞ:
Besides, p %X 3 i %X ¼ 1 %X and therefore Fðp %XÞ 3Fði %XÞ ¼ 1Fð %XÞ: The same is true for the

canonical mappings p %Y and i %Y: Hence Fði %XÞ and Fði %YÞ are the injections of,

respectively, Fð %XÞ and Fð %YÞ in Fð %X" %YÞ; while Fðp %XÞ and Fðp %YÞ are the

projections of Fð %X" %YÞ on, respectively, Fð %XÞ and Fð %YÞ: Besides, the correspond-

ing products are the identities of Fð %XÞ and Fð %YÞ: This immediately implies
(2.13). &
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2.5. Splitting interpolation functors

Let EnðZd
þÞ be a subcategory of Bn comprising n-tuples of E-parameters as its

objects. Given %FAEnðZd
þÞ and %XABn; one introduces the n-tuple

%Fð %XÞ :¼ ðF0ðX0Þ;y;FnðXnÞÞ: ð2:15Þ

Here FðXÞ is a Banach space of vector-valued functions f : Zd
þ-X given by

jjf jjFðXÞ :¼ jjðjjf ðkÞjjX ÞkAZd
þ
jjF ð2:16Þ

Definition 2.8. Interpolation functors F on Bn splits %Fð %XÞ if

Fð %Fð %XÞÞ ¼ Fð %FÞðFð %XÞÞ ð2:17Þ

with equivalence of the norms.

Several important functors on B1 possessing this property were discovered by A.
Calderòn and Lions and Peetre (see, e.g., [BK2, Section 4.3] and references therein).
The Calderòn theorem asserts the splitting property for the upper complex functor

CZ; 0oZo1; and gives a constructive description of the space CZð %FÞ; %F :¼ ðF0;F1Þ:
In the case of %FAE1ðZd

þÞ it implies that

CZð %Fð %XÞÞ ¼ FðCZð %XÞÞ; ð2:18Þ

where

F :¼ F1�Z
0 FZ

1 ð2:19Þ

is the Calderòn operation on couples %F of Banach lattices. Let us recall that F is a
Banach lattice defined through the norm

jjf jjF :¼ inffjjf0jj1�Z
F0

jjf1jjZF1
: jf j ¼ jf0j1�Z jf1jZg: ð2:20Þ

It is worth noting that F is also an E-parameter. In fact, condition (2.8) is clearly true
for F: The Fatou property of F is known to be equivalent to the duality relation

F00 ¼ F; where F0 is the Banach lattice associated with F: In our case F0 is defined
through the norm

jjf jjF0 :¼ sup
X

kAZd
þ

f ðkÞgðkÞ

������
������ : jjgjjFp1

8<
:

9=
;:

According to the general duality theorem, due to Lozanovski [L],

ðF1�Z
0 FZ

1Þ0 ¼ ðF1
0Þ

1�ZðF0
1Þ

Z:

Hence F has the required property, provided F0;F1 have.

We now introduce the Cy on Bn; y :¼ ðy0;y; ynÞ; where yi40 and
Pn

i¼0 yi ¼ 1;

using the following general iterative procedure.
Let F 1;y;F n be interpolation functors on the category of Banach couples B1:

One introduces an interpolation functor F :¼ F 1 � F 2 �?� F n on Bn inductively
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by setting

ðF 1 �?� F nÞð %XÞ :¼ F 1ðX0; ðF 2 �?� F nÞðX1;y;XnÞÞ: ð2:21Þ

It is easily verified that (2.20) defines an interpolation functor on Bn with the

interpolation constant bounded by
Qn

i¼1 CF i
: To clarify the choice of parameters in

our definition of Cy as a product (2.19), we introduce the following notion.

Interpolation functor F on Bn is of the power type y :¼
ðy0;y; ynÞ; yi40;

Pn
i¼0 yi ¼ 1 if for each TALð %X; %YÞ the following interpolation

inequality:

jjT jFð %XÞjjFð %XÞ;Fð %YÞpC
Yn

i¼0

ðjjT jXi
jjXi ;Yi

Þyi ð2:22Þ

holds with a constant independent of T :

Proposition 2.9. If F i is an interpolation functor on B1 of the power type ð1�
Zi; ZiÞ; 1pipn; then the functor in (2.21) is of the power type y ¼ ðy0;y; ynÞ where

yi :¼ Z0Z1?Zið1� Ziþ1Þ; ð2:23Þ

here Z0 :¼ 1 and Znþ1 :¼ 0:

Proof. Use induction on n: &

This proposition motivates our next

Definition 2.10. Let y :¼ ðy0;y; ynÞ; yi40;
Pn

i¼0 yi ¼ 1; and Zi; 1pipn be the

(unique) solution to the system of equations (2.23). Then the upper complex functor

Cy is given by

Cy :¼ CZ1 � CZ2 �?� CZn : ð2:24Þ

For the case of n-tuples of E-parameters Cyð %FÞ can be computed through the

Calderón operation %Fy :¼ Fy0
0 ?Fyn

n which is introduced similarly to (2.20). Actually,

according to the Calderón theorem, CZðF0;F1Þ ¼ F1�Z
0 FZ

1 with the constant of

equivalence for the norms bounded by 2. Therefore induction on n straightforwardly
yields the relation

Cyð %FÞ ¼ %Fy ð2:25Þ

with the constant of equivalence bounded by 2n: In turn, the splitting result (2.18)
combined with induction on n immediately gives

Proposition 2.11. It is true that

Cyð %Fð %XÞÞ ¼ %FyðCyð %XÞÞ ð2:26Þ

provided %FAEnðZd
þÞ and %XABn:
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Applying construction (2.21) to the real interpolation functors %XZi ;q with ZiAð0; 1Þ
given by (2.23), one then can use the obtained functor to set the respective splitting
result. The starting point here is the Lions–Peetre theorem which, in particular,
implies that

ð %Fð %XÞÞZ;q ¼ Fð %XZ;qÞ;

here F :¼ F1�Z
0 FZ

1 and E-parameters F0;F1 are weighted cp spaces with distinct p’s.

Unfortunately, the last condition brings unnecessary restrictions into the final result.
For this reason we prefer to use another generalization of the real functor introduced

through the notion of K-functional on Bn: Let us recall its definition: for xASð %XÞ and
tARnþ1

þ

Kðt; x; %XÞ :¼ inf
Xn

i¼0

tijjxijjXi
: x ¼

Xn

i¼0

xi

( )
: ð2:27Þ

The required functor on Bn is denoted by Ryq; yi40;
Pn

i¼0 yi ¼ 1; 1pqpN; and

introduced through the norm

jjxjjRyqð %XÞ :¼
Z
Rnþ1

þ

Kðt; x; %XÞ
ty

� �q

dH

( )1
q

; ð2:28Þ

where ty :¼
Qn

i¼0 tyi

i ; and dH :¼ dt1?dtn

t1?tn
is the (Haar) measure on ðRþ\f0gÞnþ1:

The splitting result for Ryq was due to Sparr [Sp, Theorem 8.2]. In the case of the

E-parameters Fi given by norms of the form

jjf jjcw
p
:¼

X
kAZd

þ

ðwðkÞjf ðkÞjÞp

8<
:

9=
;

1
p

ð2:29Þ

with 1pppN and a positive weight w; the Sparr theorem gives the equality

Ryqð %Fð %XÞÞ ¼ %FyðRyqð %XÞÞ; ð2:30Þ

provided Fi :¼ cwi
pi
: It is worth noting that in this case

%Fy ¼ cw
q ; ð2:31Þ

where w :¼
Qn

i¼0 wyi

i and 1
q
:¼
Pn

i¼0
yi

pi
:

2.6. n-tuples of approximation spaces

Let %XABn and A :¼ fAk : kAZd
þg be an approximation family in Sð %XÞ: We say

that A is AF in %X; if each Xi-A is AF in Xi; 0pipn: Here

X-A :¼ fX-Ak : kAZd
þg:
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If now %FAEnðZd
þÞ; then we introduce an n-tuple of approximation spaces by

E %Fð %X;AÞ :¼ ðEF0
ðX0;X0-AÞ;y;EFn

ðXn;Xn-AÞÞ: ð2:32Þ

Similarly to Definitions 2.2 and 2.3 we introduce

Definition 2.12. ð %X;AÞ is complemented if there is a family P :¼ fPkALð %XÞ : kAZd
þg

such that PkjXi
is a projection on Xi-Ak; 0pipn; kAZd

þ; and, besides,

jjPjj %X :¼ sup
k

jjPkjj %XoþN: ð2:33Þ

Replacing here PkjXi
by a mapping on Akþ1-Xi preserving Ak; we introduce the

notion of quasicomplemented AF ð %X;AÞ:

3. The main result

The result concerns approximation spaces generated by AF ’s of a special form. In

order to introduce them we use a set %A :¼ fAi : 1pipdg of AF ’s in an n-tuple %X and
a covering k of NðdÞ :¼ f1;y; dg by (ordered) subsets which do not contain each

other. To simplify the notations we assume all the Ai to be one-parametric, i.e.,

Ai :¼ fAi
k : kAZþg; the general case can be derived by the very same argument.

Given %A and k; one introduces the desired A :¼ fAk : kAZd
þg by

Ak :¼
\
oAk

X
iAo

Ai
ki

 !
; k ¼ ðk1;y; kdÞAZd

þ: ð3:1Þ

Let now %FAEnðZd
þÞ and oCNðdÞ: Then one defines a subtuple %Fo of %F as follows.

For the E-parameter F associated with Zd
þ one denotes by Fo its (closed) subspace

comprising functions of variables ki with iAo: This, clearly, is an E-parameter
associated with the ordered Abelian semigroup

Zo
þ :¼ fðkiÞiAo : kiAZþg; ð3:2Þ

recall that oAk is a subset of NðdÞ inheriting its order. Then we let

%Fo :¼ ððF0Þo;y; ðFnÞoÞ: ð3:3Þ

The conditions of the theorem also involve operators So defined on finitely
supported functions f : Zo

þ-R by

ðSof ÞðkÞ :¼
X
cXk

f ðcÞ; kAZo
þ: ð3:4Þ

We say that So is bounded in %F; if it can be continuously extended to Sð %FoÞ and

this extension belongs to Lð %FoÞ: This, in particular, implies that for fASð %FoÞX
c

jf ðcÞjoþN: ð3:5Þ
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Given ð %X;AiÞ; 1pipd; %F and k; one introduces now the assumptions for the main
theorem.

(a) Each ð %X;AiÞ is complemented and Pi :¼ fPi
kALð %XÞ : kAZþg is the correspond-

ing family of projections.
(b) Projections of distinct families Pi commute.
(c) Each operator So with oAk is bounded in %F:

Under these conditions the following is true.

Theorem 3.1. If an interpolation functor F splits each n-tuple %Foð %XÞ; oAk; then it

also splits the n-tuple E %Fð %X;AÞ with A defined by (3.1), that is to say,

FðE %Fð %X;AÞÞ ¼ EFð %FÞðFð %XÞ;AÞ ð3:6Þ

with equivalence of the norms.

Proof. We begin with the following auxiliary result. Let Ao :¼ fAk : kAZo
þg;oAk;

be AF in %X defined by

Ak :¼
X
iAo

Ai
ki
: ð3:7Þ

In this case eAo ; see (2.3), is a function of variables ki; iAo: Let us consider an n-

tuple of AS’s E %Fo
ð %X;AoÞ; we simplify this notation by putting

Eo
%Fð %X;AÞ :¼ E %Fo

ð %X;AoÞ: ð3:8Þ

Proposition 3.2. There exists a morphism Ro in the category Bn that maps Eo
%Fð %X;AÞ in

%Foð %XÞ and possesses a right inverse morphism.

Proof. Set for kAZo
þ

Pk :¼ 1�
Y
iAo

ð1� Pi
ki
Þ: ð3:9Þ

The commutativity condition (b) implies that Pka ¼ a for aAAi
ki
; iAo: Hence Pk is a

projection on
P

iAo Ai
ki
¼: Ak; kAZo

þ; and the following is true.

Lemma 3.3. ð %X;AoÞ is complemented and Po :¼ fPk : kAZo
þg is the corresponding

family of projections.

To introduce the required morphism Ro one sets for kAZo
þ

Rk :¼
Y
iAo

Pi
ki

and R
j
k :¼

Y
iAo\fjg

Pi
ki
: ð3:10Þ

By the commutativity condition

Rk ¼ Pi
ki

Ri
k; iAo: ð3:11Þ
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Since Pi
0 is a projection on Ai

0 :¼ f0g; see (2.1), one also gets

Rk ¼ 0; if min
iAo

ki ¼ 0: ð3:12Þ

Define now Ro on finitely supported vector-functions f : Zo
þ-X by

Rof :¼
X

kAZo
þ

Rkþ1f ðkÞ; ð3:13Þ

here k þ 1 :¼ ðki þ 1ÞiAo and X is an intermediate space of %X:

Let now G be an interpolation functor on Bn; let also

F :¼ Gð %FoÞ and X :¼ Gð %XÞ: ð3:14Þ

We will show that Ro is defined by (3.13) for all fAFðX Þ: In fact, by the condition

(c), SoALð %FoÞ and therefore the interpolation inequality (2.11) yields

jjSojjFpCGjjSojj %Fo
oþN: ð3:15Þ

This, in turn, implies for fAFðX Þ the inequalityX
kAZo

þ

jjf ðkÞjjXoþN;

see (3.5). At last, RkALð %XÞ and therefore

jjRkjjXpCGjjRkjj %XpCG
Y
iAo

jjPijj %X: ð3:16Þ

Hence the series in (3.13) is absolutely convergent and Ro is defined for all fAFðX Þ:

Lemma 3.4. Ro maps FðXÞ in EFðX ;AoÞ and its norm is bounded by a constant

dependent only on the amounts in the right-hand side of (3.15) and (3.16).

Proof. For kAZo
þ one sets

½k� :¼ Zo
þ \ fcAZo

þ : ci4ki � 1; iAog:

Let us show that the element

yk :¼
X
cA½k�

Rcþ1 f ðcÞ; fAFðXÞ

belongs to Ak: To this end one presents ½k� as the disjoint union of the sets O0 :¼
fcAZo

þ : ciokig and Oi :¼ fcAZo
þ : ciXki � 1 and cjokj; jaig; iAo: By (3.11),X

cAO0

Rcþ1 f ðcÞ ¼
X
iAo

X
cioki

Pi
ciþ1ðzi

cÞ;

where zi
c are suitable elements from X : The latter sum, clearly, belongs toP

iAo

P
cipki

Ai
ci
C
P

iAo Ai
ki
¼: Ak; see (3.7) and (2.1). In turn, for a suitable ziAXX

iAo

X
cAOi

Rcþ1f ðcÞ ¼
X
iAo

Pi
ki
ðziÞAAk:

ARTICLE IN PRESS
I. Asekritova, Y. Brudnyi / Journal of Approximation Theory 129 (2004) 182–206 193



Hence ykAAk and therefore

ekðRof ;XÞ ¼ ek

X
iAo

X
ci4ki�1

Rcþ1 f ðcÞ;X

 !

p sup
c

jjRcjjX
X
cXk

jjf ðcÞjjX ¼: CSoðjjf jjX ÞðkÞ:

Here and below C stands for a constant depending only on unessential parameters
that can vary from line to line. Taking here F-norm and using the inequalities (3.16)
and (3.15), one gets

jjRof jjEFðX ;AoÞ :¼ jjðekðRf ;XÞÞkAZo
þ
jjF

p cjjSojjF jjf jjFðX Þpcjjf jjFðXÞ:

The proof is complete. &

Apply this lemma to the case of G equal to S : %X-Sð %XÞ and pi : %X-Xi; 0pipn;
respectively. Then it implies that Ro is a morphism of the category Bn mapping

Eo
%Fð %X;AÞ in %Foð %XÞ: Besides, its norm is bounded by a constant depending only on

jjSojj %F and jjP ijj %X; iAo:
To complete the proof of Proposition 3.2, it remains to introduce a morphism

which is right inverse to Ro: To this end one defines the operator of mixed
differences D given on the family of projectors PkAPo; see (3.9),

DPk :¼
Y
iAo

ðPkþei
� PkÞ; ð3:17Þ

where feigd
i¼1 is the standard basis of Rd : By commutativity of Pk’s this can be

rewritten in the form

DPk ¼
X

vAf0;1go
ð�1ÞeðvÞPkþv; ð3:18Þ

where eðvÞ is the number of zero coordinates of v:

Define now, up to sign, the required right inverse Po on elements of SðEo
%Fð %X;AÞÞ

by

Pox :¼ ðDPkÞkAZo
þ
: ð3:19Þ

Under the notations of Lemma 3.4 the following is true.

Lemma 3.5. Po maps EFðX ;AoÞ in FðXÞ and its norm is bounded by a constant

depending only on CG; jjSojj %F and jjP ijj %X; iAo:

Proof. According to (2.7)

jjx � PkxjjXpð1þ jjPkjjX Þekðx;X Þ: ð3:20Þ
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Together with (3.18) this gives

jjDPkjjXp 1þ sup
k

jjPkjjX
� � X

vAf0;1go
ekþvðx;X Þ:

Since the translation operators f ðkÞ-f ðk þ vÞ; vAf0; 1go are bounded on the set of
positive f by Sof ; their norms in F are at most jjSojjF: Therefore

jjPoxjjFðX Þ :¼ jjjjðDPkxÞkAZo
þ
jjX jjF

p 2joj 1þ sup
k

jjPkjjX
� �

jjSojjFjjðekðx;XÞÞkAZo
d
jjF

¼ : CjjxjjEFðX ;AoÞ:

By (3.15) and (3.16) C is bounded by a constant depending only on the desired
parameters. &

Using, as before, this lemma for the case of G equal to S and pi; iAo; one

concludes that Po is a morphism of Bn which maps Eo
%Fð %X;AÞ in %Foð %XÞ; and its norm

is bounded by a constant depending only on jjSojj %F and jjP ijj %X; iAo:
Let us now establish that, up to sign, the morphism Po is a right inverse to Ro: It

suffices to prove that

RoPox ¼ ð�1Þd�1
x; ð3:21Þ

provided xASðEo
%Fð %X;AÞÞ: To this end one begins with the identityX

cpk

DRcx ¼
X
vAVk

ð�1ÞeðvÞRvx; kAZo
þ; ð3:22Þ

where Vk is the set of vertices of the parallelepiped fxARo : 0pxipkig and eðvÞ is
the number of zero coordinates of v: Since Rv ¼ 0 if miniAo vi ¼ 0 (see (3.12)), the
right-hand side of (3.22) equals Rkx ¼ ðRkx � xÞ þ x: Besides, by (3.10) and (3.20),

we obtain for X :¼ SðEo
%F ð %X;AÞÞ the inequality

jjRkx � xjjXp
X
iAo

Y
j4i

jjPj
kj
jjX

 !
� jjx � Pi

ki
xjjXpC

X
iAo

eki
ðx;X Þ;

with C depending only on jjPijj %X; iAo; see (3.16) for G :¼ S: Since Ai
ki
¼ Akiei

(see

(3.7)) and jjSojjSð %FoÞpjjSojj %Fo
oN; the right-hand side of the above inequality tends

to zero as each ki becomes þN; see (3.5) for f ðcÞ :¼ ecðx;X Þ and F :¼ Sð %FoÞ:
Together with (3.22) this yields

lim
X
cpk

DRc x ¼ x ð3:23Þ

as miniAo ki becomes infinity.
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Now definitions (3.13) and (3.19) of Ro and Po and the identity

DPk :¼ D 1�
Y
iAo

ð1� Pi
ki
Þ

 !
¼ ð�1Þd�1D

Y
iAo

Pi
ki

 !
:¼ ð�1Þd�1DRk

yield RoPo ¼ ð�1Þd�1 S Rkþ1DRk: Besides, (3.18) and the monotonicity of the
family of projections Rk give

Rkþ1DRk ¼
X

vAf0;1go
ð�1ÞeðvÞRkþ1Rkþv ¼

X
vAf0;1go

ð�1ÞeðvÞRkþv ¼ DRk:

Combining this with the previous identity and then applying (3.23), one gets

RoPox ¼ ð�1Þd�1
X

k

DRkx ¼ ð�1Þd�1
x:

Thus ð�1Þd�1
Po is a right inverse to Ro:

Proposition 3.2 has been proved. &

We continue the derivation of Theorem 3.1 by the following result. In its

formulation ko :¼ ðkiÞiAoAZo
þ whenever kAZd

þ:

Lemma 3.6. The equivalence

ekðx;XÞE
X
oAk

ekoðx;XÞ ð3:24Þ

holds with positive constants independent of kAZd
þ and xAXð:¼ Gð %XÞÞ:

Proof. According to (3.1) and (3.7)

Ako*Ak :¼
\
oAk

X
iAo

Ai
ki

 !
:¼
\
oAk

Ako ;

this implies the first inequality (3.24) as one getsX
oAk

ekoðx;X Þpjkjekðx;XÞ:

To establish the inverse inequality, one introduces for a given kAZd
þ the operator

Pk :¼
Y
oAk

Pko ; ð3:25Þ

where Pko is the projection on Ako defined by (3.9). Since the operators of the

product in (3.25) commute, Pk is a projection on
T

oAk Ako ¼: Ak: Besides, PkALð %XÞ
and its norm is bounded by a constant depending only on jjPijj %X; 1pipd; and PkjXi

is a projection on Ak-Xi; 0pipn: Therefore, PkjX :¼ PkjGð %XÞ belongs to LðX Þ;
its norm is bounded by jjPkjj %X; and it is a projection on Ak-X : Thus, for xAX
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we have

ekðx;XÞp jjx � PkxjjXpC
X
oAk

jjx � PkoxjjX

pC
X
oAk

ð1þ jjPko jjX Þekoðx;X ÞpC
X
oAk

ekoðx;XÞ;

where C depends only on CG and jjP ijj %X; 1pipd: &

We will now define the direct sum of the spaces Eo
FðX ;AÞ; oAk: Let us recall that

the norm of x :¼ ðxoÞoAk in "oAk Eo
FðX ;AÞ is given by

jjxjj :¼
X
oAk

jjxojjEo
F ðX ;AÞ; ð3:26Þ

while Eo
FðX ;AÞ is defined by (3.8) with n ¼ 0: In this definition k is assumed to be

ordered in some way, and X :¼ Gð %XÞ:
Denote then by DFðX Þ a ‘‘diagonal’’ of that direct sum comprising elements

ðxoÞoAk such that xo ¼ x for all oAk and some x from
T

oAk Eo
FðX ;AÞ: It is easily

seen that DFðXÞ is a closed subspace of the direct sum.

Lemma 3.7. The space EFðX ;AÞ is isomorphic to DFðXÞ and the constants of

isomorphism depend only on CG and jjPijj %X; 1pipd:

Proof. In virtue of (3.24) and (3.8)

jjxjjEFðX ;AÞ :¼ jjeAðx;XÞjjFE
X
oAk

jjeAoðx;XÞjjFo
:¼
X
oAk

jjxjjEo
F ðX ;AÞ:

Recall that Fo is the closed subspace of F comprising functions of variables
ki; iAo: Then the mapping I : x/ðxoÞoAk; where xo :¼ x; yields the required

isomorphism. &

Using now the operators Ro and Po of Proposition 3.2 one constructs the
operators

R :¼
M
oAk

Ro and P :¼
M
oAk

Po; ð3:27Þ

that is to say, P sends an element ðxoÞoAk from "oAk Eo
F ðXÞ in the element

ðPoxoÞoAk while R acts similarly in the opposite direction. Using now the

isomorphism I : EFðX ;AÞ-DFðX Þ from the previous lemma, one sets

P̃ :¼ PI ; R̃ :¼ I�1R:

Then R̃ : "oAk Fo-EFðX ;AÞ and P̃ : EFðX ;AÞ-"oAk Fo; and the norms of
these operators are bounded as required. Besides, by Proposition 3.2

R̃P̃ ¼ I�1RPI ¼ 71EFðX ;AÞ: ð3:28Þ

Taking now G to be the functors %X-Sð %XÞ and %X-Xi; 0pipn; respectively, one

establishes that the mapping R̃ is a morphism from "oAk %Foð %XÞ into E %Fð %X;AÞ; and
P̃ is a morphism acting in the reverse direction. Recall that the n-tuple %Fo is defined
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by (3.3). Besides, by (3.28),

R̃P̃ ¼ 71E %Fð %X;AÞ:

We are now in a position to finalize the proof. Let F be an interpolation functor
on Bn subject to the splitting condition

Fð %Foð %XÞÞ ¼ Fð %FoÞðFð %XÞÞ; oAk: ð3:29Þ

Let xAFðE %Fð %X;AÞÞ; and let F :¼ Fð %FÞ; Fo :¼ Fð %FoÞ and X :¼ Fð %XÞ: By
Proposition 2.7, the interpolation inequality (2.11) and the splitting condition
(3.29) one has

jjP̃xjjFð"oAk %Foð %XÞÞpCjjP̃xjjL
oAk

Fð %Foð %XÞÞ

pCjjP̃xjjL
oAk

FoðX ÞpCjjxjjEFðX ;AÞ:

Here C depends only on CF and the norm of morphism P̃: Applying now (3.28) one
obtains

jjxjjFðE %Fð %XAÞÞ ¼ jjR̃P̃xjjFðE %Fð %X;AÞÞpCjjP̃xjjFð"oAk %Foð %XÞÞ:

Together with the previous inequality this yields the embedding

EFðX ;AÞ :¼ EFð %FÞðFð %XÞ;AÞCFðE %Fð %X;AÞÞ:

The inverse embedding is derived in exactly the same fashion. Actually, one has

jjxjjEFðX ;AÞ ¼ jjR̃P̃xjjEFðX ;AÞpCjjP̃xjjL
oAk

FoðX Þ

pCjjP̃xjjFð"oAk %Foð %XÞÞpCjjxjjFðE %Fð %X;AÞÞ;

and the inverse embedding is also established.
The proof Theorem 3.1 is complete. &

Concluding Remarks 3.8. (a) Theorem 3.1 remains to be true for quasicomple-

mented families ð %X;AiÞ; 1pipd; as well. The only change of the proof is as follows.
We now define Ro (see (3.13) by

Rof :¼
X

kAZo
þ

Rkþ2f ðkÞ;

where k þ 2 :¼ ðk1 þ 2;y; kd þ 2Þ: Then the set ½k� in the proof of Lemma 3.4 has to
be defined as the complement of the set fcAZo

þ : ci4ki � 2g:
Under this modification the derivation of Theorem 3.1 yields the required result

for the quasicomplemented AF ’s.
(b) Strictly speaking, our definition of AS imposes one more assumption on the

functor F : the Banach lattice Fð %FÞ is an E-parameter, provided that each Fi is. The
functors used in the present paper do have this property. But we can remove this
assumption in another way by modifying the definition of AS: In this new definition
F is a Banach lattice satisfying the only condition (2.8), and EFðX ;AÞ is introduced

by (2.10). Then Fð %FÞ is a Banach lattice satisfying (2.8) but EFðX ;AÞ may be
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incomplete. We will say that EFðX ;AÞ is AS; if it is complete. Under this definition
Theorem 3.1 holds without additional assumptions on F :

4. Examples and applications

All our examples concern Besov spaces and their generalizations of various types.
Their presentation as AS’s is based on results going back to the classical S.
Bernstein’s and D. Jackson’s theorems of trigonometric approximation. In what
follows most of these results will be used in a form related to approximation in
translation invariant Banach lattices rather than in Lp: Such a generalization does

not require new ideas and can be derived by the very same argument as in the case of
Lp; see, e.g., [Sh, Section 9.3], where a similar extension is introduced. It is worth

pointing out that the interpolation theorems presented below remain to be new even
in the case of Lp-spaces.

4.1. Isotropic Besov spaces

Let B be a one-parametric approximation family consisting of the linear subsets

A0 :¼ f0g and Ak :¼ B2kðRdÞ; k ¼ 0; 1; 2;y: Here BsðRdÞ is the Bernstein class of

bounded on Rd entire functions of exponential type and degree ps: Then for the

classical Besov space Bsq
p ðRdÞ the following is true:

Bsq
p ðRdÞ ¼ Ecs

qðZþÞðLp;BÞ; ð4:1Þ

where the E-parameter is given by

jjf jjcs
qðZþÞ :¼

XN
k¼0

j2skf ðkÞjq
( )1

q

: ð4:2Þ

Besides, B is a quasicomplemented in an n-tuple ðLp0
;y;Lpn

Þ and the respective

quasiprojectors Pk are the (Vallee–Poussen) operators, that is to say,

Pkf :¼ c2k � f ; ð4:3Þ

where ctðxÞ ¼ t�dcðtxÞ; t40; and its Fourier transform #c is a test function

supported by the Euclidean ball fxAðRdÞ� : jxjp2g and equals 1 if jxjp1: The proofs
are presented, e.g., in [N]; they can be easily adapted to the case of translation
invariant Banach lattices possessing the Fatou property. The only essential fact that
should be used in this adaptation is the generalized Minkowski inequality for a
Banach lattice X with the Fatou property. It asserts thatZ

Rd

f ðx; yÞdmðyÞ
����

����
����

����
X

p
Z
Rd

jjf ð�; yÞjjX dmðyÞ;

for a nonnegative bounded Borel measure m and the function x-f ðx; yÞ belonging to
X for m-almost all y; see, e.g., [KPS, Section II.3].
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So, in the sequel X and %X are, respectively, a translation invariant Banach lattice

on Rd with the Fatou property and an n-tuple of such lattices. It is more convenient

for now to write BsqðLpðRdÞÞ instead of Bsq
p ðRdÞ and so on. Hence we have , under

this notation,

BsqðX Þ ¼ Ecs
qðZþÞðX ;BÞ: ð4:4Þ

Besides, B is quasicomplemented in %X and the respective quasiprojectors are given by
(4.3). These facts lead to the following results.

Corollary 4.1. For the upper complex method Cy on Bn; see (2.23), the isomorphism

CyðBs0q0ðX0Þ;y;BsnqnðXnÞÞ ¼ BsqðXÞ ð4:5Þ

holds with

s :¼
Xn

i¼0

yisi; q�1 :¼
Xn

i¼0

yiq
�1
i and X :¼ %Xy: ð4:6Þ

Proof. By (4.4), the left-hand side of (4.5) equals CyðE %Fð %X;BÞÞ with Fi :¼
csi

qi
ðZþÞ; 1pipd: Since the functor Cy splits %Fð %XÞ; see (2.26), one can apply the

variant of Theorem 3.1 presented in Remark 3.8 (b). In this case %A consists of the
single family B; i.e., d ¼ 1 and k ¼ Nð1Þ ¼ f1g: The corresponding integral operator
Sf1g is given by

ðSf1gf ÞðkÞ :¼
XN
c¼k

f ðcÞ; kAZþ: ð4:7Þ

The Hölder inequality implies that Sf1g is bounded in cs
qðZþÞ; if s40 and 1pqpN:

Hence the aforementioned variant of Theorem 3.1 implies the equality

CyðE %Fð %X;BÞÞ ¼ E %FyðCyð %XÞ;BÞ:

To complete the proof it remains to show that

Cyð %XÞ ¼ %Xy and %Fy ¼ cs
qðZþÞ;

where s and q are given in (4.6). The former equality follows from the validity of this
result for couples of Banach lattices with the Fatou property [C] and induction on n;
cf. the proof of Proposition 2.11. The latter one follows, for n ¼ 1; from (2.20) and
the Hölder inequality; the case n41 is then derived by induction.

Combining now all these facts with (4.4), one gets

CyðBs0q0ðX0Þ;y;BsnqnðXnÞÞ ¼ Ecs
q
ð %Xy;BÞ ¼ Bsqð %XyÞ:

The result has been proved. &
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Specially, for Xi :¼ Lpi
;

%Xy ¼ Lp; where p�1 :¼
Xn

i¼0

yip
�1
i ; ð4:8Þ

see (2.31), and therefore

CyðBs0q0
p0

;y;Bsnqn
pn

Þ ¼ Bsq
p ; ð4:9Þ

where y-means s; p; q are given by (4.6) and (4.8).
Let us now apply the very same argument to the case of the real interpolation

functor Ryq; see (2.30), and use the result asserting that

RyqðLp0
;y;Lpn

Þ ¼ Lpq; ð4:10Þ

where p is as above and Lpq is a Lorentz space. Formula (4.10) can be

straightforwardly derived from Proposition 9.3 and Theorem 9.3 from [Sp], see
also [E], where this was established for n ¼ 2 in another way. Then we immediately
obtain

Corollary 4.2. Under the above notations,

RyqðBs0q0
p0

;y;Bsnqn
pn

Þ ¼ BsqðLpqÞ: ð4:11Þ

Specially, the right-hand side is Bs
q; if q ¼ p:

4.2. Anisotropic Besov spaces

To avoid unessential but cumbersome details we confine ourselves to the case of
periodic functions. So X is now a translation invariant Banach lattice with the Fatou

property comprising measurable 2p-periodic in each variable functions on Rd : The
anisotropic Besov space over this X is determined by smoothness %s :¼ ðs1;y; sdÞ and
the parameter 1pqpN via the norm

jjf jjB %sqðX Þ :¼ jjf jjX þ sup
1pipd

jjoi
rð�; f ;XÞjjcsi

q ðZþÞ; ð4:12Þ

here r4max si and

oi
rðt; f ;X Þ :¼ sup

0ohpt

jjDr
hei

f jjX ; t40 ð4:13Þ

is the partial r-modulus of continuity in direction ei :¼ ðdi
jÞ

d
j¼1:

To present this as an AS; one introduces T :¼ fTk : kAZd
þg; where T0 :¼ f0g and

Tk is the space of trigonometrical polynomials of degree at most 2ki in xi; 1pipd:

The following presentation is a well-known classical result for LpðTdÞ; see e.g., [T,

Section 6.3.4], and can be easily extended to a general X : To formulate it we
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introduce E-parameter cw%s
N
; see (2.29), where the weight is given by

w%sðkÞ :¼
Xd

i¼1

2�kisi

 !�1

; kAZd
þ: ð4:14Þ

Then it is true that

B%s;NðXÞ ¼ Ec
w%s
N

ðX ; T Þ: ð4:15Þ

The family T ; in turn, is the intersection of families T i :¼ fTi
k : kAZþg; 1pipd;

that is to say,

Tk ¼
\d
i¼1

Ti
ki
; kAZd

þ: ð4:16Þ

Here Ti
0 :¼ f0g and Ti

k is the space of quasipolynomials with respect to xi of degree at

most 2k; kX1: In other words, functions of this space are trigonometric polynomials

in xi of degree 2k; the coefficients of which are functions from L1ðTdÞ independent of
xi:

Furthermore, each T i is quasicomplemented in an arbitrary n-tuple of Banach

lattices of the type considered here. The required quasiprojectors Pi
k; kX1; are

introduced as follows. Let VN be the classical Vallee–Poussen operator mapping 2p-
periodic univariate functions into trigonometric polynomials of degree 2N and

preserving polynomials of degree N; see e.g., [T]. Then, for fAL1ðTdÞ the

quasipolynomial Pi
kfATi

kþ1 is the result of applying V2k to f regarded as a function

xi with the fixed remaining variables. It is well-known for LpðTdÞ and can be easily

extended to the general case that

supfjjPi
kjjX : kAZþgoN:

Besides, by the definition, Pi
k and Pi0

k0 commute if iai0:

Hence we are now in a position to apply the variant of Theorem 3.1 from Remark
3.8 (a). In this case k is the partition of NðdÞ into one point subsets fig; 1pipd; and

%F ¼ ðcw%s0
N ðZd

þÞ;y; cw%sn
N

ðZd
þÞÞ;

see (4.15). Note that for F :¼ cw%s
N

the corresponding E-parameter Ffig consists of

functions from F depending only on ki: Hence

Ffig ¼ csi
N
ðZþÞ;

see (4.2) and (4.14). The corresponding n-tuple %Ffig is formed by E-parameters

c
sji
NðZd

þÞ; provided %sj :¼ ðsjiÞd
i¼1:

At last, the operator Sfig from (3.4) with o :¼ fig coincides with that in (4.7).

Therefore Sfig is bounded in each cs
qðZþÞ with s40 and 1pqpN and it then follows

that Sfig is bounded in %F:
Applying now the aforementioned variant of Theorem 3.1 to the case (4.15) and

repeating with a trivial modification the argument of proof for Corollary 4.1, we
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immediately get the next relation:

CyðB%s0;NðX0Þ;y;B%sn;NðXnÞÞ ¼ Ecw
N
ðZd

þÞð %X
y; T Þ; ð4:17Þ

where

w :¼
Yn

i¼0

ðo%si
Þyi : ð4:18Þ

The similar argument can be applied in the case of the real interpolation method.

Remark 4.3. It is easy to show that the right-hand side of (4.17) embeds into

B%s;Nð %XyÞ with %s given by (4.6).

Remark 4.4. To apply Theorem 3.1 to the general situation, we have to present the

space B%s;qðX Þ with arbitrary q as a d-parametric AS of a form Ecoq ðZd
þÞðXÞ: Surprisingly,

we have to solve a nonlinear algebraic equation to find the parameters for o:

4.3. Spaces with dominated mixed difference

In this subsection we also consider only the case of periodic functions leaving to

the reader the case of functions on Rd : Besides, the basic approximation facts related

to our interpolation result were proved in [B] only for X :¼ LpðTdÞ; 1pppN; and

their extension to more general Banach lattices requires some additional argument
(see concluding remarks).

To introduce our main object, we need the notion of mixed modulus of continuity

of order kAZd
þ: Recall that it is given for fALpðTdÞ by

okðt; f ;LpÞ :¼ sup
0phpt

jjDk
h f jjp; tARd

þ: ð4:19Þ

The mixed difference of this definition is introduced as a product of partial
differences, i.e.,

Dk
h :¼

Yd

i¼1

Dki

hei
:

The space of interest L %sq
p with %s ¼ ðs1;y; sdÞ; si40 and 1pp; qpN consists of

functions fALpðTdÞ whose norms

jjf jjL %sq
p
:¼ jjf jjp þ jjokð�; f ;LpÞjjc%sqðZd

þÞ ð4:20Þ

are finite. Here ki4si; 1pipd; and the E-parameter on the right is given through
the norm

jjf jjc%sqðZd
þÞ :¼

X
cAZd

þ

2c�%sf ðcÞ
�� ��q

8<
:

9=
;

1
q

:
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The basic approximation result related to this space involves the d-parametric AF

TQ :¼ fTQk : kAZd
þg with

TQk :¼
Xd

i¼1

Tki

i ;

where Ti
k; kAZþ is the space of quasipolynomials introduced above, see (4.16) and

the subsequent text. The required result asserts that up to equivalence of the norms

L %sq
p ¼ Ec%sqðZd

þÞðLp; TQÞ; ð4:21Þ

see [B].

In turn, TQ is quasicomplemented in each n-tuple ðLp0
;y;Lpn

ÞðTdÞ; 1ppipN;

and the corresponding family of quasiprojectors is introduced by

Pk :¼ 1�
Yd

i¼1

ð1� Pi
ki
Þ; kAZd

þ;

where Pi
k; kAZþ were defined in the previous subsection via the Vallee–Poussen

operators.
Hence we can now apply, as before, the variant of Theorem 3.1. In this case the

covering k consists of the single set NðdÞ; and the corresponding operator

ðSNðdÞf ÞðkÞ :¼
X
cXk

f ðcÞ; kAZd
þ

is bounded in each space c%sqðZd
þÞ with si40 and 1pqpN; by the Hölder inequality.

Using the same argument as in the previous cases, we then immediately obtain the
following results.

Corollary 4.5. Up to equivalence of the norms

CyðL%s0q0
p0

;y;L%snqn
pn

Þ ¼ L %sq; ð4:22Þ

where y-means %s; p; q are introduced as in (4.6) and (4.8).

Corollary 4.6. Up to equivalence of the norms

RyqðL%s0q0
p0

;y;L%snqn
pn

Þ ¼ L %sq
pq; ð4:23Þ

where %s; p; q are as above, and the space on the right-hand side is defined by (4.19) and

(4.20) with Lp replaced by the Lorentz space Lpq:

Particularly, the right-hand side is L %sq
p ; if q ¼ p:

4.4. Concluding remarks

(a) Using approximation by univariate splines with uniformly distributed knots and
their tensor products, one can extend all the interpolation results presented
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above to the case of nonperiodic functions defined on d-cubes, bounded or
unbounded.

(b) Derivation of (4.21) presented in [B] can be easily adapted to the case of mixed
L %p space with %p :¼ ðp1;y; pdÞ: Hence (4.22) remains valid with pi replaced by

vectors %pi: The resulting space L %sq
%p with %p being y-mean of %pi is defined by (4.20)

with Lp replaced by L %p:

(c) Using the Calderón–Mityagin interpolation theorem [M], it is possible to extend

(4.21) to the case of rearrangement invariant spaces over Td or d-cube and in
this way to extend Corollary 4.5 to this class of Banach lattices.

(d) At last, one can consider in the same fashion the case of L-spaces determined by
a given set of mixed moduli of continuity.
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